当前位置: 主页 > 教学园地 > 精品教案 >

《平行线的性质》教学设计 刘丰提

时间:2014-06-11 15:56来源:未知 作者:刘丰提 点击:

《平行线的性质》教学设计与课堂实录

                    刘丰提

一、教学目标

  1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.

  2.会用平行线的性质进行推理和计算.

  3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.

  4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.

  二、学法引导

  1教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.

  2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.

  三、重点·难点解决办法

  (一)重点

  平行线的性质公理及平行线性质定理的推导.

  (二)难点

  平行线性质与判定的区别及推导过程.

  (三)解决办法

  1.通过教师创设情境,学生积极思维,解决重点.

  2.通过学生自己推理及教师指导,解决难点.

  七、教学步骤

  (一)明确目标

  掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.

  (三)教学过程

  创设情境,复习导入

  师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).

 

 

  3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B 142°,第二次拐的角∠C是多少度?

  学生活动:学生口答第12题.

  师:第3题是一个实际问题,要给出∠C的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:

  [板书]2.6  平行线的性质

  【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.

  探究新知,讲授新课

  师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?

  学生活动:学生在练习本上画图并思考.

  学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.

 

  【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.

  学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.

  提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线EF′,使它截平行线AB CD,得同位角∠3、∠4,利用量角器量一下;∠3 与∠4有什么关系?

  学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.

  根据学生的回答,教师肯定结论.

  师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.

板书]两条平行线被第三条直线所截,同位角相等.

  简单说成:两直线平行,同位角相等.

  【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.

  提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?

 

  学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.

  师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.

  学生活动:学生们思考,并相互讨论后,有的同学举手回答.

  【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.

  教师根据学生回答,给予肯定或指正的同时板书.

  [板书]a//b(已知),(两条直线平行,同位角相等).

  (对项角相等),(等量代换).

  师:由此我们又得到了平行线有怎样的性质呢?

  学生活动:同学们积极举手回答问题.

  教师根据学生叙述,板书:

  [板书]两条平行经被第三条直线所截,内错角相等.

  简单说成:西直线平行,内错角相等.

  师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.

  师生共同订正推导过程和第三条性质,形成正确板书.

[板书](已知),(两直线平行,同位角相等).

  (邻补角定义),

  (等量代换).

  即:两条平行线被第三条直线所截,同旁内角互补.

  简单说成,两直线平行,同旁内角互补.

  师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:(已知见图6),(两直线平行,同位角相等).(已知),(两直线平行,内错角相等).(已知),.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)

  尝试反馈,巩固练习

  师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?

  学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):

  如图7,已知平行线被直线所截:


7

  (1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?

  【教法说明】练习目的是巩固平行线的三条性质.

  变式训练,培养能力

  完成练习(出示投影片3).

  如图8是梯形有上底的一部分,已知量得,梯形另外两个角各是多少度?


8

  学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.

  【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.

  [板书]解:(梯形定义),(两直线平行,同旁内角互补).

1.如图9,已知直线DE经过点ADE//BG ,∠B=44°

  (1等于多少度?为什么?

  (2等于多少度?为什么?

  (3各等于多少度?

  2.如图10在一条直线上,

  (1时,各等于多少度?为什么?

  (2时,各等于多少度?为什么?

  学生活动:学生独立完成,把理由写成推理格式.

  【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.

  (四)总结、扩展

  (出示投影片11题和投影片5)完成并比较.

  如图11

  (1(已知),

  (   ).

  (2(已知),

  (   ).

  (3(已知),

  (   ).

  学生活动:学生回答上述题目的同时,进行观察比较.

  师:它们有什么不同,同学们可以相互讨论一下.

  (出示投影6

 

平行线的性质

2005325 来源:网友提供 作者:未知 字体:[ ]

教学建议

  1教材分析

  (1)知识结构

  平行线的性质:

 

  (2)重点、难点分析

  本节内容的重点是平行线的性质.教材上明确给出了两直线平行,同位角相等推出两直线平行,内错角相等的证明过程.而且直接运用了的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.

  本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.

  2、教法建议

  由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.

  (1)讲授新课

  首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.

  (2)综合应用

  理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点.老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.

  (3)适当总结

  几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的题目,能做到想得明白,写得清楚,书写逐渐规范.

 

 教学目标:

  1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.

  2.通过本节课的教学,培养学生的概括能力和观察-猜想-证明的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.

  3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.

  教学重点:平行线性质的研究和发现过程是本节课的重点.

  教学难点:正确区分平行线的性质和判定是本节课的难点.

  教学方法:开放式

  教学过程:

  一、复习

  1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?

  2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

  3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。

  如、a=b,则a2=b2”是正确的,但a2=b2,则a=b”是错误的。又如对顶角相等是正确的。但相等的角是对顶角则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。

  二、新课

  1、我们先看刚才得到的第一句话两直线平行,同位角相等。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?

 

  学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.

  【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.

  巩固练习(出示投影片7

  1.如图12,已知上的一点,上的一点,.(1平行吗?为什么?


12

  (2是多少度?为什么?

  学生活动:学生思考、口答.

  【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.

  八、布置作业

  (一)必做题

  课本第99100A组第1112题.

  (二)选做题

  课本第101B组第23题.

  作业答案

  A11.(1)两直线平行,内错角相等.

  (2)同位角相等,两直线平行.两直线平行,同旁内角互补.

  (3)两直线平行,同位角相等.对顶角相等.

  12.(1(已知),(内错角相等,两直线平行).

  (2(已知),(两直线平行,同位角相等),(两直线平行,同位角相等).

  B2(已知),(两直线平行,同位角相等),(两直线平行,内错角相等).

  (已知),(两直线平行,同位角相等),(同上).又(已证),.又(平角定义),

3.平行线的判定与平行线的性质,它们的题设和结论正好相反.

想想看,两直线平行,内错角相等这句话有哪些已知条件,由哪些图形组成?

  已知:如图,直线ab

  求证:(114;(212180°

  证明:ab(已知)

   ∴∠1=3(两直线平行,同位角相等)

   又∵∠34(对顶角相等)

   ∴∠14

  (2ab(已知)

   ∴∠13(两直线平行,同位角相等)

   又∵∠23180°(邻补角的定义)

   ∴∠12180°

  思考:如何用(1)来证明(2)?

  例1、如图,是梯形有上底的一部分,已经量得1115°D100°,梯形另外两个角各是多少度?

  解:梯形上下底互相平行

   ∴∠AB互补,DC互补

   ∴∠B180°115°65°

   C180°100°80°

  答:梯形的另外两个角分别是6580°

  (一)重点

  判定定理的推导和例题的解答.

  (二)难点

  使用符号语言进行推理.

  (三)解决办法

  1.通过教师正确引导,学生积极思维,发现定理,解决重点.

  2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

  四、课时安排

  1课时

  五、教具学具准备

  三角板、投影仪、自制胶片.

  六、师生互动活动设计

  1.通过设计练习,复习基础,创造情境,引入新课.

  2.通过教师指导,学生探索新知,练习巩固,完成新授.

  3.通过学生自己总结完成小结.

  七、教学步骤

  (一)明确目标

  掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

  (二)整体感知

  以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

  (三)教学过程

  创设情境,复习引入

  师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

 1.如图1所示,直线b被直线所截,如果,那么,为什么?

  2.如图2,如果,那么,为什么?


1      图2

  3.如图3,直线被直线所截.(1)如果,那么,为什么?

  (2)如果,那么,为什么?

  4.如图4,一个弯形管道的拐角,这时管道平行吗?

 
3            图4

  学生活动:学生口答第12题.

  师:你能说出有什么条件,就可以判定两条直线平行呢?

  学生活动:由第l2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

  教师将第3题图形画在黑板上.

  学生活动:学生口答理由,同角的补角相等.

  师:要求学生写出符号推理过程,并板书.

  [板书](已知),

  (邻补角定义),

  (同角的补角相等).

  (以备后面推导判定定理使用.)

  【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第12两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

  师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

  学生活动:同分内角.

  师:它们有什么关系.

  学生活动:互补.

  师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

  [板书]2.5 平行线的判定(2

【教法说明】通过一个实际问题,引出本节所学问题,同时使学生了解几何知识和我们的实际生活是紧密相连的,要解决实际问题就要学习新知识,从而激发学生的学习兴趣.

  探究新知,讲授新课

  师:请同学们看复习提问中的第3题,我们知道了互补,那么,由此你还可以推出什么?根据什么?

  学生活动:学生思考、回答,还可以推出,这个推理的全过程就是:

2+3=180°(已知),∠1+3=180°(邻补角定义),

  (同角的补角相等).

  *(同位角相等,两直线平行.)(教师再加上这一步即可).

  由此你能得到什么结论?

  学生活动:学生思索后回答出,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(学生语言不规范,注意纠正).

  师:也就是说,我们又得到了一种平行线的判定方法,我们把它简单说成:

  [板书]同旁内角互补,两直线平行.

  【教法说明】由于复习引入第3题为定理的推导做好了铺垫,所以学生并不难接受推理过程,放手由学生总结出判定方法,注意培养学生的归纳总结能力,另外在叙述判定方法时,训练学生用准确、规范的几何语言.

  师:请同学们思考,刚才我们由同旁内角互补,推导两条直线平行,除了上面的推理过程,有没有其他途径?怎样写推理格式?

  学生活动:学生思考,对照复习提问第3题的第2问很快地找到另一种途径,并在练习本上写出推理格式,找一个学生在原来黑板上的板书基础上完成.

  【教法说明】通过使用不同种方法的推理,不仅开拓学生思维,同时也能够让学生尽可能地使用推理,从而使学生掌握推理格式的书写.

  尝试反过,巩固练习

  师:有了这种判定方法,我们就可以由同旁内角互补,直接判定两条直线平行了,让我们回到复习提问的第4题,管道平行吗?为什么?

  学生活动:平行,因为同旁内角互补,两直线平行.

  【教法说明】不仅解决了前面遗留的问题,同时巩固了所学新知识.

  师:下面我们一起应用这种判定方法再来研究一些题目(出示投影).

  练习:

  1.如图1,量得,可以判定,它的根据是什么?

 
1       图2

  2.如图2,已知,互补,可以判定哪两条直线平行?与哪个角互补,可以判定直线

  【教法说明】这组练习进一步对判定方法加以巩固,第2题的第2问是根据给出的结果,找它成立的条件,是执果索因,学生应该没有什么困难,教师不必多讲,但要注意第2问中出现答互补这类错误时,要结合图形让学生弄清是哪两条直线被哪两条直线所截.

  例题讲解

  师:我们学习了三种平行线的判定方法,在具体题目中如何选择应用它们来解决问题呢?下面我们看例题(出示投影).

  例  两条直线垂直于同一条直线,这两条直线平行吗?为什么?

  师:这个题目相当于文字题,解答时应根据题意画出图形(如图3),同时为了叙述方便,还要在图形上标出需要的字母或符号.


3

  学生活动:学生分析题意,按所说画出相应的图形.

  师:我们要判定两条直线是否平行,应先想什么?可以讨论.

  学生活动:讨论后答出,先想学过哪些判定平行线的方法.

  师:再看已知条件与哪一种方法的条件相同或有关,思考时注意图形,按老师所标直角符号,回答问题.

  学生活动:学生认真观察,积极思考后,踊跃回答.

  教师给出规范的板书,答:垂直于同一条直线的两条直线平行.

  理由:如图3

  (已知),

  (垂直的定义).

  (同位角相等,两直线平行).

  师:这是两步推理,两个之间省略的一个,是什么内容?

  学生活动(已证).

  【教法说明】教师在讲解时,注意后发学生,引导学生形成正确的思维,从而学会分析问题,提高解题能力.

  师:想一想,能不能利用内错角相等,或者同旁内角互补,来说明呢?图形中的符号怎样改动?模仿例题说出理由

  学生活动:学生思考,并在练习本上写出理由,请两名同学到黑板上去做,形成板书:

4

  理由:如图4

  (已知),(垂直的定义).

  (内错角相等,两直线平行).

理由:如图5

  (已知),

5

  (垂直的定义).

  (同旁内角互补,两直线平行).

  【教法说明】一题多解既巩固所学知识,同时培养了学生的发散思维,提高了学生的解 题能力.

  变式训练,培养能力

  练习(出示投影):

  1.如图6,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?

  2.如图7,如何判断这块玻璃板的上下两边平行?

  
6         图7

  学生活动:学生思考,给出第1题的答案为两条垂线平行.因为画出的两条线都垂直于工件边缘,也就是说,相交成直角,根据同位角相等(或内错角相等或同旁内角互补),两直线平行;对于第2题需要添出截线,然后有三种方法来判断.

  【教法说明】这两个题目都是实际问题,培养学生应用所学知识解决实际问题的能力尤其是第2题,我们判定两条直线是否平行,必须根据被第三条直线截出的三种位置的关系角的大小来判定,通过此题,让学生进一步理解平行线的三种判定方法及应用.

  (四)总结、扩展

  师:我们学习了几种判定两条直线平行的方法.

  学生活动:学生自己总结归纳完成下表.

判定

文字叙述

符号语言

图形

第一种

 

同位角相等,两直线平行

(已知),

(  )

第二种

内错角相等,两直线平行

(已知),

(  )

第三种

同旁内角互补,两直线平行

(已知,)(  )

 

 1.判断正误

  (1)两条不相交的直线叫做平行线.(  )

  (2)有且只有一个公共点的两直线是相交直线.(  )

  (3)在同一平面内,不相交的两条直线一定平行.(  )

  (4)一个平面内的两条直线,必把这个平面分为四部分.( )

  2.下列说法中正确的是(  )

  A.在同一平面内,两条直线的位置关系有相交、垂直、平行三种.

  B.在同一平面内,不垂直的两直线必平行.

  C.在同一平面内,不平行的两直线必垂直.

  D.在同一平面内,不相交的两直线一定不垂直.

尝试反馈,巩固练习(出示投影).

  1.画线段AB=45cm,画任意射线AX,在AX上取C’D’ B’三点,使AC’=C’D’=D’B’,连结BB’,用三角板画CC’//BB’DD’//BB’ ,分别交ABCD,量出ACCDDB的长(精确到1mm).

   2.读下列语句,并画图形

  (1)点是直线外的一点,直线经过点,且与直线平行.

  (2)直线是相交直线,点是直线外的一点,直线经过点与直线平行与直线相交于

  (3)过点,交的延长线于

尝试反馈,巩固练习(投影)

  填空:(已知),

    _______________(   ).

同位角、内错角、同旁内角

2005826 来源:网友提供 作者:未知 字体:[ ]

教学建议

  一、知识结构

 

  二、重点难点分析

  本节教学的重点是同位角、内错角、同旁内角的概念.难点为在较复杂的图形中辨认同位角、内错角、同旁内角.掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的基础.

  (1)两条直线被第三条直线所截,构成八个角(简称三线八角),其中同位角4对,内错角2对,同旁内角2对.

  (2)准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.

  (3)在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.

  (4)在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.

  三、教法建议

  1.上节课讨论了两条直线相交以后所形成的四个角,这一节课是进一步讨论三条直线相交后所形成的八个角,所以在教课过程,要运用基本图形结构将所学的知识及其内在联系向学生展示.

  2.在讲三线八角概念时,一定要细致地分析、顾名思义,把握住两个关键的环节,三条线与一条线,尽量给出变式的图形,让学生分辨清楚.

  3.这节课虽然不涉及两条直线平行后被第三条直线所截的问题,但在可能的情况下,将平行线的图形让学生见到,对下一步的学习很有好处,例如,平行四形中的内错角,学生开始接受起来有一定困难,在这一课时中,出现这个基本图形,为以后学习打下基础.

 

教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解同位角、内错角、同旁内角的概念.

  2.结合图形识别同位角、内错角、同旁内角.

  (二)能力训练点

  1.通过变式图形的识图训练,培养学生的识图能力.

  2.通过例题口答为什么,培养学生的推理能力.

  (三)德育渗透点

  从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点.

  (四)美育渗透点

  通过三线八角基本图形,使学生认识几何图形的位置美.

  二、学法引导

  1教师教法:尝试指导,讨论评价、变式练习、回授.

  2.学生学法:主动思考,相互研讨,自我归纳.

  三、重点、难点、疑点及解决办法

  (一)生点

  同位角、内错角、同旁内角的概念.

  (二)难点

  在较复杂的图形中辨认同位角、内错角、同旁内角.

  (三)疑点

  正确理解新概念.

  (四)解决办法

  引导学生讨论归纳三类角的特征,并以练习加以巩固.

  四、课时安排

  1课时

  一、教具学具准备

  投影仪、三角板、自制胶片.

  六、师生互动活动设计

  1.通过一组练习创设情境,复习基础知识,引入新课.

  2.通过学生阅读书本,教师设问引导,练习巩固讲授新课.

  3.通过师生互答完成课堂小结.

  七、教学步骤

  (一)明确目标

  使学生掌握三线八角,并能在图形中进行辨识.

  (二)整体感知

  以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知.

  (三)教学过程

  创设情境,复习导入

  回答下列问题:

  1.如图,1324是什么角?它们的大小有什么关系?

  2.如图,12l4是什么角?它们有什么关系?

  3.如图,三条直线ABCDEF交于一点O,则图中有几对对顶角,有几对邻补角?

]

  4.如图,三条直线ABCDEF两两相交,则图中有几对对项角,有几对邻补角?

  5.三条直线相交除上述两种情况外,还有其他相交的情形吗?

  学生答后,教师出示复合投影片1,在(12题的)图上添加一条直线CD,使CDEF相交于某一点(如图),直线ABCD都与EF相交或者说两条直线ABCD被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系.

  【板书】 2.3同位角、内错角、同旁内角

  【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况.认识事物间是发展变化的辩证关系.

  尝试指导,学习新知

  1.学生自己尝试学习,阅读课本第67页例题前的内容.

  2.设计以下问题,帮助学生正确理解概念.

  (1)同位角:48与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?

  (2)内错角:35与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?

  (3)同旁内角:45与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?

  (4)同位角和同分内角在位置上有什么相同点和不同点?

  内错角和同旁内角在位置上有什么相同点和不同点?

  (5)这三类角的共同特征是什么?

  3.对上述问题以小组为单位展开讨论,然后学生间互相评议.

  4教师对学生讨论过程中所发表的意见进行评判,归纳总结.

  在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在三线八角的图形中的主线是截线,抓住了截线,再利用图形结构特征(FZU)判断问题就迎刃而解.

  【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力.

  投影显示(投影片2

  例题  如图,直线DEBC被直线AB所截,(1l21314各是什么关系的角?

  (2)如果14,那么12相等吗?13互补吗?为什么?

    变式训练,巩固新知

  投影显示(投影片3

【教法说明】本题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即abc所截,如ca被占所截,则结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提.

 2.相交直线

 

  【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的三线,或是由三线八角图形判断同位角、内错角、同旁内角.这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位.这三看又离不开主线——截线的确定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线(不变),去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为若干个基本图形.如第2题由已知条件结合所求部分,对各个小题分别分解图形如下:

  投影显示(投影片5

垂线

  1.知识结构

 

  2.重点和难点分析

  (1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调有一个角是直角,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直.反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角.对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身.

  (2)本节的难点是空间直线与平面、平面与平面的垂直关系.因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直.教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖.

  3.教法建议

  (1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);(2)当ab相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识.

  (2)对于空间里直线与平面、平面与平面垂直的知识是要求学生了解的内容,不是重点但是难点,因为此时学生的空间想象力差,不容易想象它们垂直的情形,为了突破这个难点,

  我们做了一个课件,这个课件把直线与平面、平面与平面垂直的情况,更直观的展现了学生,帮助学生对此知识的理解.

 

教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握垂线的概念。

  2.会用三角尺或量角器过一点画一条直线的垂线。

  3.使学生理解并掌握垂线的第一个性质。

  (二)能力训练点

  1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。

  2.通过垂线的画法,进一步培养学生的实际动手操作能力。

  (三)德育渗透点

  使学生初步树立辩证唯物主义观点。

  (四)通过垂线,使学生进一步体会到几何图形的对称美。

  二、学法引导

  1教师教法:活动投影片演示直观教学法,引导发现法.

  2.学生学法:在教师的指导下,自主式学习.

  三、重点、疑点及解决办法

  (一)重点

  垂线概念和性质.

  (二)难点

  垂线的判断和性质的理解运用.

  (三)疑点

  垂线的性质.

  (四)解决办法

  通过创设情境,引导学生主动发现性质,并运用练习加以巩固.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、三角尺、量角器、自制胶片.

  六、师生互动活动设计

  1.通过创设情境,复习基础知识,引入课题.

  2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.

  3.通过师生互答完成归纳小结.

  七、教学步骤

  (一)明明目标

  通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.

  (二)整体感知

  以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.

(三)教学过程

  创设情境,复习引入

  提出问题:如右图,(1AOC的对顶角是哪个角?这两个角的关系怎样?

  (2AOC的邻补角有几个?是哪几个角?

 

 



------分隔线----------------------------
------分隔线----------------------------
返回顶部
济源网站建设