2014年寒假开学七年级数学抽考试题
一、选择题(每题3分,共18分)
1.下列式子等于0的是( )
A.-32-(-3)2 B.︱-3︱-(-3)
C.-32+(-3)2 D.(-3)2 +32
2.长江三峡工程电站的总装机容量是18200000千瓦,用科学记数法表示应记作( )
A.0.18×108千瓦 B.1.82×106千瓦
C.1.82×106千瓦 D.1.82×107千瓦
3.按某种标准把多项式分类,4x4-4与a3b+2ab-1属于同一类,则下列哪一个多项式也属于此类( )
A.-x5 +y4 B. 3x3 -3 C.2abcd+1 D. a3 +3a2b+3ab2+b3 4.某商店的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价 元,商店老板同意出售.
A.90元 B.100元 C.120元 D.150元
5.如图,已知∠AOC=90º,∠COB=α,OD平分∠AOB,则∠COD等于( )
A. B. C. D.
(5题图) ( 6题图 )
6.如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB⊥l),小李认为选择路线PB挖渠才能使渠道最短,他的依据是 ( )
A.两点确定一条直线 B.两点之间,线段最短
C.垂线段最短 D.过一点有且只有一条直线与已知直线垂直
二、填空题(每题3分,共21分)
7.若︱a-1︱与︱b+5︱是互为相反数,那么b-a=
8.数x的相反数与3的和乘以它与4的差等于-18,列方程
9.若单项式2abn-1与am+1b的差仍是单项式,则m+n=
10.两根木棍,一根长60cm,另一根长100cm,将它们的一段重合,放在同一条直线上,此时两根木条的中点间的距离是
11.若3x-4=-1与ax+b+1=-c有相同的解,则(a+b+c)2014=
12.已知线段AB的长度为18cm,点C在线段AB的延长线上,且AC=BC,则线段BC=
13.托运行李Pkg(P为整数)的费用标准为:已知托运第一个1KG需付3元,以后每增加1kg(不足1kg按1kg计)需增加费用5角,某人托运Pkg(p>1)的行李,则托运行李的费用为
三、解答题
14. 16÷(-2)3-︱-︱×(-4)(6分)
15.以下是小黄同学解方程的过程,请你仔细阅读,判断他解得是否正确.如果不正确,请给予改正;如果正确,请换一种解法.
解:去分母,得,
移项,得,
合并同类项,得7 =6,
系数化为1,得.(7分)
16.小马虎同学在做一道数学题:“两个多项式A和B,其中B=4x2-5x-6,试求A+B”时,错误的将“A+B”看成了“A-B”,结果求出的答案是-7x2+10x+15,那么请你帮他求出正确的“A+B”.(8分)
17.如图,直线AB,CD相较于点O,OA平分∠EOC.
(1)请你写出∠BOD邻补角 ,对顶角
(2)若∠EOC=70°,求∠BOD的度数;
(3)若∠EOC:∠EOD=2:3,求∠BOD的度数.(10分)
18.(1)已知a=-2,b=-5,求a3×b3,(ab)3的值,它们有什么关系?
(2)利用上题结论计算:()2014×(-3)2014
(3)已知x,y互为倒数,a、b互为相反数,p为绝对值最小的数,求xy+3(a+b)+x2014×y2014+5p的值.(10分)
19.如图,将一副三角板的两个直角顶点重合在一起放置.
(1)当∠BOC=60°时,∠AOD= ;
(2)当∠BOC=80°时,∠AOD= ;
(3)小明由此作出了推测,得出结论“三角板AOC绕重合的点O旋转,不论旋转到哪个位置,∠AOD与∠BOC始终互补”,你同意他的结论吗?请简要说明理由.(10分)
20.某地生产一种绿色蔬菜,若在市场上直接销售,每吨可获利1000元;经粗加工后销售,每吨可获利4500元;经精加工后销售,每吨可获利7500元。当地一家农工商公司收获这种蔬菜140t,该公司的生产能力是:如果对蔬菜进行粗加工,每天可加工16t;如果进行精加工,每天可加工6t。但两种加工方式不能同时进行。受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此,公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地对蔬菜进行精加工,没有来得及的进行加工的蔬菜,直接在市场上销售;
方案三:将部分蔬菜进行精加工,其余的蔬菜进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?(10分)